A comprehensive quantitative comparison of myocardial motion in mice, rabbits and humans using phase contrast MRI
نویسندگان
چکیده
Methods Phase contrast MRI [1] was used to measure regional three-directional LV myocardial motion with high temporal resolution in mice (N=18), rabbits (N=8), and humans (N=20). Radial, long-axis, and rotational myocardial velocities were acquired in left ventricular basal, mid-ventricular, and apical short-axis locations (see Table 1 for scan parameters). Positive radial velocities indicate contraction, positive long-axis velocities motion from base to apex, positive in-plane rotation is defined as clockwise viewed from apex to base. Global (averaged over the entire segmentation mask) and regional (by partitioning the LV into 16 segments according to the 17-segment model by the AHA) motion patterns were analyzed. Peak velocities were determined as well as velocity-ratios between lateral and septal wall, anterior and inferior wall, and basal and apical segments as dimensionless parameter for a comparison between species.
منابع مشابه
A quantitative comparison of regional myocardial motion in mice, rabbits and humans using in-vivo phase contrast CMR
BACKGROUND Genetically manipulated animals like mice or rabbits play an important role in the exploration of human cardiovascular diseases. It is therefore important to identify animal models that closely mimic physiological and pathological human cardiac function. METHODS In-vivo phase contrast cardiovascular magnetic resonance (CMR) was used to measure regional three-directional left ventri...
متن کاملComparison of Two Quantitative Susceptibility Mapping Measurement Methods Used For Anatomical Localization of the Iron-Incorporated Deep Brain Nuclei
Introduction Quantitative susceptibility mapping (QSM) is a new contrast mechanism in magnetic resonance imaging (MRI). The images produced by the QSM enable researchers and clinicians to easily localize specific structures of the brain, such as deep brain nuclei. These nuclei are targets in many clinical applications and therefore their easy localization is a must. In this study, we aimed to i...
متن کاملAutomatic Prostate Cancer Segmentation Using Kinetic Analysis in Dynamic Contrast-Enhanced MRI
Background: Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides functional information on the microcirculation in tissues by analyzing the enhancement kinetics which can be used as biomarkers for prostate lesions detection and characterization.Objective: The purpose of this study is to investigate spatiotemporal patterns of tumors by extracting semi-quantitative as well as w...
متن کاملSynthesis and evaluation of chitosan manganese-ferrite nanoparticles as MRI contrast agent
Magnetic nanoparticles are the good choice for using in MRI as the contrast agent. Iron oxide particles such as magnetite (Fe3O4) or its oxidized form maghemite (γ-Fe2O3) are the most commonly employed in biomedical applications. In this study, we synthesized and optimized the preparation of chitosan manganese-ferrite nanoparticles (CMn-Fe nps) and evaluated its ability for the mice macrophage ...
متن کاملSynthesis and evaluation of chitosan manganese-ferrite nanoparticles as MRI contrast agent
Magnetic nanoparticles are the good choice for using in MRI as the contrast agent. Iron oxide particles such as magnetite (Fe3O4) or its oxidized form maghemite (γ-Fe2O3) are the most commonly employed in biomedical applications. In this study, we synthesized and optimized the preparation of chitosan manganese-ferrite nanoparticles (CMn-Fe nps) and evaluated its ability for the mice macrophage ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 14 شماره
صفحات -
تاریخ انتشار 2012